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Short Abstract

A sensor network consists of a fusion center and distributed sensors, which detect the occurrence of an event over a given field. This paper explains an algorithm for placing sensors on a two-dimensional field, so as to minimize the total transmission power from the sensors to the fusion center.

Medium Abstract

A sensor network consists of a fusion center and distributed sensors, which detect the occurrence of an event over a given field. Upon detection, the sensors send a signal back to the fusion center. The probability that a sensor detects an event is dependant on both the distance from the event to the sensor and the sensor’s threshold. Thus, the closer the event to the sensor, the more likely the sensor will detect it. In many situations, sensors are battery-operated and have a limited power supply. Replacing batteries may be inconvenient or impractical. It may be desirable to place the sensors so that the total transmission power is minimized. An algorithm for such a placement has been studied in one-dimension by Zhenyu Tu. Our research is an extension of Tu’s work.
This paper explains an algorithm for placing sensors on a two-dimensional field, so as to minimize the total distance between the sensors and the fusion center (thus, minimizing the transmission power), while keeping the probability of detection over a given field relatively high  and the probability of detecting false alarms relatively low.
Using MATLAB, we wrote a program that minimizes total transmitted power, subject to a detection probability constraint and a false alarm probability constraint. In the simulation results section, we conducted simulations with different numbers of sensors on a 20 x 20 field with the fusion center located at a corner of the field. We discovered that, as in the one-dimensional case, a uniform placement is not always optimal.
Introduction
Sensor networks have the potential for many practical real-world applications. A network consisting of a fusion center and distributed sensors can detect the occurrence of a rare event over a given field, for example, a nuclear blast or an SOS radio call. When and if the event happens, the sensors send a signal to the fusion center, which then makes a decision based on the input. The sensors do not send a signal if they do not detect the event.

The probability that a sensor detects an event is dependant on both the distance from the event location to the sensor and the sensor’s threshold of detection. A sensor is more likely to detect an event in close proximity, than one that is further away. Additionally, the higher the threshold, the less likely a sensor is to detect an event (up to a point).
However, in many cases sensors are battery-operated and have a limited power supply. It may be desirable to minimize the transmission power from each sensor to the fusion center. To do this, we must minimize the total distance from the sensors to the fusion center.
In addition, while a low threshold may result in high detection probability, it also increases the probability that a sensor will detect random background noise. This is called the “false-alarm” probability. If the sensors are detecting too many false alarms, not only will this cause problems from a practical standpoint, it also will increase the total transmission power. 
So essentially, we want to maximize the probability of detection over a given field, minimize the false-alarm probability over the same field, and minimize the total distance between the sensors and the fusion center. Since we have three goals, we need to decide which one will be the objective function, and set constraint values for the other two.
Background

Tu (2006) proposes an algorithm for optimal sensor placement in one dimension. Tu’s work assumed that the desired field of detection is a positive interval [0,L], with the fusion center located at the origin. To do this, Tu sets constraints on the false-alarm and detection probabilities. The false-alarm probability of each sensor must be less than or equal to some given α. In addition, the entire interval must be covered with detection probability greater than or equal some given ß. 
Tu assumes that i.i.d (independent and identically distributed) observation noise samples (random noises that are not the event) follow a Gaussian distribution with zero mean and variance one (Tu, 105). He then derives the following equation for the false alarm probability at sensor i:


PFi = (1/2) erfc (sqrt(N/2)*τi)

where τi is the threshold of sensor i and erfc represents the complementary error function, defined as:


erfc(x)=2/sqrt(π) *
[image: image1.wmf]e

dt

t

x

2

¥

ò

.

According to Tu, the probability of detection also follows a Gaussian distribution, with mean Adi-γ, where A is the signal amplitude measured at distance di=1 from the emitter location and γ is an exponent expressing how the signal diminishes as it moves further away from the emitter. 

Then, according to Tu, the following equation represents the probability of detection  at sensor i:

PDi = (1/2) erfc (sqrt(N/2)(τ- Adi-γ)).
Tu derives a function that relates these two probabilities to a radius, r. The idea is that for any location within r of sensor i, PFi will be less than or equal to α, and PDi will be greater than or equal to ß.

To get an optimal sensor placement, Tu minimizes the distances between the sensors and the origin, while changing the location and radius of each sensor, subject to the constraints that the whole interval be covered, and no two radii overlap. Tu finds that his algorithm produces better results than a uniform placement, where each sensor has the same coverage radius, and random placement, where each sensor location is generated individually.  
Problem Formulation
Our goal is to apply Tu’s ideas to a two-dimensional system. Like before, we want to minimize the total power transmission (by minimizing the sum of the distances from the sensors to the origin), subject to constraints on the false-alarm and detection probabilities. Though we use the same equations for PFi  and PDi, the idea of non-overlapping coverage radii is not really applicable in two dimensions. Where in one dimension, a coverage radius is an interval, in two dimensions the same radius is a circle. Thus, covering a square grid require a different method.
Our algorithm looks for an optimal placement for P sensors on an S by S square with the fusion center located at the bottom left corner (0,0). The objective function pulls the sensors close to (0,0). This, however, will result in a low detection probability for points far away from the fusion center. The problem, then, is how to ensure that the whole grid is covered with a detection probability of ß or higher.
Our detection constraint takes the form of an “enemy function.” The function takes in the current guess for sensor locations, and then checks 900 uniformly placed points to see which one has the lowest probability of detection. This is the “enemy point,” the point at which an enemy would put their signal if they knew where the sensors were located. The constraint is satisfied if the probability of detection at the enemy point is greater than ß. Though this doesn’t ensure that every point in the grid has the desired detection probability, it forces the sensors to spread out.
Next, we need to place a constraint on τ. Since we require the false alarm probability to be less than α, we use Tu’s equation for PFi, which ensures that τ does not get too small (and make the sensor detect every noise) (Refer to Figure 4).
Ideally, we would like to be able to place the sensors anywhere on the grid. This, however, is difficult because it requires two variables for each sensor (an x and y coordinate). For problems with a large number of sensors, this would take too long to compute. In addition, there might be multiple local optima, making it nearly impossible to find the true optimal solution.

We attempt to get around this hurdle by arranging the sensors on a plaid grid. The sensors are in straight lines, with the distances between the lines as the decision variables. So the nth decision variable represents the distance between the vertical lines Vn and Vn-1, and also the distance between the horizontal lines Hn and Hn-1.
For our calculations, we let τ be the last decision variable, assuming that each sensor has the same threshold.

The math formulation of our algorithm is as follows:

minimize 
Σ di 
where di is the distance from sensor i to the fusion center (0,0)
ST:

PFi  ≤ α



PDe  ≥  ß 
where e is the enemy point


all variables > 0
Simulation Results
We ran our algorithm using MATLAB with the following fixed values: N=10, α=0.1, ß=0.98, γ=1, while varying the size of the grid, s, and the number of sensors, p. We used a uniform placement for the initial guess, with the distance between each line equal to s/sqrt(p), and an initial τ value of 0.35. In some cases, we then compared our objective function value to that of a uniform placement. In each case, our solution was better. In tables below, g represents the vector of distances between lines of sensors. 
	
	g1
	g2
	g3
	g4
	g5
	g6
	τ
	Obj. Func. Value

	Proposed Algorithm
	0
	0
	0
	2.4635
	3.5637
	3.3899
	0.4053
	187.6243


Table 1: Optimal solution and uniform solution for s=10, p=36
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Figure 1: Sensor placement on a 10 by 10 grid with 36 sensors

It is interesting to note that the algorithm sent multiple sensors to the same points. It appears that this system only needs 16 sensors to reach an optimal solution. Another use of this algorithm could be to figure out how many sensors are necessary for a given s. By choosing a value of p that is too large, the program will simply send any unused sensors to the x and y axis.
The default number of function evaluations that MATLAB will calculate is 100 times the number of decision variables. We ran the following two trials with 10,000 function evaluations, and took the best solution. The results are very slightly infeasible, but close enough for analysis.
	
	g1
	g2
	g3
	g4
	g5
	g6
	g7
	τ
	Obj. Func. Value
	Uniform Placement Obj. Func Value
	PFi
	PDi

	Proposed Algorithm
	0
	2.5644
	3.4569
	3.4501
	3.4884
	3.4533
	3.3572
	0.4054
	743.3432
	840.5962
	.0999
	.979


Table 2: Optimal solution and uniform solution for s=20, p=49
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Figure 2: Sensor placement on a 20 by 20 grid with 49 sensors.

	
	g1
	g2
	g3
	g4
	g5
	g6
	g7
	g8
	τ
	Obj. Func. Value
	Uniform Placement

 Obj. Func Value
	PFi
	PDi

	Proposed 

Algorithm
	0.0041
	0
	2.9219
	2.9509
	3.5368
	3.5165
	3.5015
	3.3789
	0.4053
	878.8441
	1083.1
	0.1
	.979


Table 3: Optimal solution and uniform solution for s=20, p=64
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Figure 3: Sensor placement on a 20 by 20 grid with 64 sensors

In Tu’s research, the total transmission power declined as the number of sensors increased (Tu, 111). Here we have an example in two dimensions where that is not the case.
[image: image5.png]



Figure 4: Threshold vs. false-alarm probability
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Figure 5: Threshold vs. detection probability

Opportunities for further research

Further analysis could be done to determine other algorithms for sensor placement in two dimensions. We have considered other ways of placing the sensors on the grid so as to reduce the number of decision variables, but still produce a good solution. Instead of a plaid arrangement, sensors could be placed on a polar grid, with l lines and m sensors per line. The decision variables would be the angles between the lines and the distance from each sensor to the origin.
Another possibility is to create a triangular grid. This would be similar to the plaid grid, but with the lines angled. Again, the distance between the lines would be the decision variables.
Another possibility would be to look at maximizing the probability of detection, or minimizing the probability of false alarm. The function could either be restricted in the total transmission, or provide a penalty based on distance from each sensor to the origin. Perhaps this could be treated like a set-covering problem.
Conclusions

Using Tu’s work as a basis, we were able to come up with an algorithm for optimal sensor placement in two dimensions. Our program minimized the total transmission power (by minimizing the sum of the distances between each sensor and the fusion center), while keeping the false-alarm probability low, and the detection probability high. Our algorithm produces solutions where the total transmission power is less that that of a uniform placement. Since uniform placement is commonly used, our algorithm could provide better solutions to a number of real-world situations. We did not, however, reach the same conclusion as Tu, that adding more sensors reduces the total transmission power. More research is required to figure out why.
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